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ABSTRACf 

Natural deposits contain small brine inclusions which can be set 

motion by a temperature gradient arising from storaee of nu~lear wastes 

the salt. Inclusions totally filled with liquid move up the temperature 

gradient, but cavities which are filled partly with liquid and partly by 

an insoluble move in opposite direction, The velocities of these 

liquid inclusions are calculated from a model which includes: heat 

transport in the gas/liquid/solid ccrnposite medium; vapor transport of water 

in the gas bubble as the principal mechanism causing cavity motion; and the 

effect of molecular and thermal diffusion on transport of salt in the liquid 

phase. An analytical expression for the inclusion velocity is obtainable 

with certain simplifications, which include: approximating the cubical cavity 

in the solid as a spherical hole containing a central gas bubble and an 

annular shell of liquid; neglecting interface kinetics (L e., slow dissolution 

and crystallization steps) and assuming the process to be diffusion-controlled 

and disregarding fluid motion generated by surface tension gradients at the 

gas/liquid interface. The theory predicts a change in the migration direction 

at a critical volume fraction gas in the cavity. For gas fractions greater 

t11::m this ical value, the theory gives the velocit of migration down 

the temperature gradient which are in satisfactory agreement with available 

eAverbnental data. 
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A. INTRODUCTION 

Natural salt deposits contain small cubical inclusions of brine dis

tributed through the sal L (l) Temperature gradients resulting frm1 storage of 

heat-generating wastes con cause the inclusions to move through 

the salt. (Z) (3) Prediction of the rate and runoun_t of brine-inclusion 

migration necessary for the evaluation of bedded or domed salts as 

possible media for waste repositories. (4) (S) 

Inclusions filled exclusively with liquid migrate up the temperature 

gradient towards the heat source. However, some inclusions also contain 

a gas phase consisting of lvater vapor and an inert gas. These two-phase 

inclusions usually migrate down the temperature gradient away from the 

heat source, remaining more-or-less cubical as they do so. A two-phase 

inclusion also fonns when an all-liquid inclusion reaches the waste pack-

age; upon opening up at the salt-package interface, the brine partially 

evaporates and the inclusion reseals with some insoluble gas trapped 

inside. These gas-liquid inclusions proceed to move clown the temperature 

gradient, in the opposite sense of the all-liquid inclusions. The 

behavior of gas-liquid inclusions in a thermal gradient is particularly 

relevant to the technology of nuclear waste disposal because the phenomenon 

provides a pathway by which radionuclides leached from the wasteform by 

the brine can be tnmsported away from the waste package and thus have 

greater access to the biosphere. 

The mechanism of thermal gradient migration of gas-liquid inclusions 

1s shown in Fig. L Water vapor evaporates from the hot side of the gas 

bubble in the brine and is transported to the cold side where it condenses, 

111e condensed water is recycled to the hot side by backflow of the brine, 
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which provides the mechanism for moving salt from the cold face of the 

inclusion to the hot face. The inclusion moves in the opposite direction 

from the salt flow. 

The object of the analysis is to determine the velocity of the two

phase .fluid inclusion in the thermal gradient imposed on the solid salt. 

We present a more detailed theory of this process than that offered by 

Anthony and Cline (6). In particular~ we allow for: 

i) non~tmifonn flow field in the liquid; 

ii) the effect of the heat of vaporization of water on the tempera-

ture distributions; 

iii) non-uniform concentration distribution of the salt dissolved in 

the liquid phase, 

Detailed fluid flow, heat and mass transport calculations cannot be 

done analytically for the actual geometry of the inclusion, which is a gas 

bubble in a cubical brine cavity in an infinite medium of solid. Therefore, 

the cubical shape of the cavity is approximated by a sphere of radius b 

with a central spherical bubble of radius a. The spherical shell between 

the gas bubble and the solid is filled with liquid. This composite sphere 

is embedded in an infinite medium of solid which supports a temperature 

gradient VT at large distances from the inclusion. 
00 

The calculated temperature distribution in a single-phase spherical 

inclus~on embedded in an infinite solid (7) shows that the temperature gradient 

inside the sphere is uniform across the eros::; section, 'Thus~ the vapor flux 

which is. driven by the temperature gradient inside the sphere (via the 

temperature dependence of the vapor pressure) is also uniform over the sphere 

section, We assume that the one..,diJnensional nature of the vapor flux 



across the central bubble also applicable to the two-phase inclusion, 

which can be justified at the completion of the calculation. We define j 

2 as the flux of water vapor (ni:lle/cm -sec) across the gas bubble (hot-to-cold). 

In Section B, the flow field in the liquid shell needed to return the 

water flux arriving from the vapor phase is determined. In Section C, the 

tcn~)eratuTe distributions in the gas, liquid, and solid phases are calculated. 

In Section D, the concentration distribution of salt dissol vcd in the liquid 

shell is determined. The water flux is calculated in Section E and in 

Section ;F, the velocity of the inclusion is computed. 'Ine theory 

compared with da.ta from the literature in Section G. 

B, ;FLUID FLOW IN THE LIQUID SHELL 

1he flow of water in the liquid phase which retun1s the water vapor 

flux j requires a pressure drop in the liquid. 'The pressure drop denoted 

by Lip£ and represents the liquid pressure on the cold side of the inclusion 

minus that on the hot side. Llp9. is determined by the quantity of fluid which 

is moved (which is proportional to the vapor flux j) and by the flow resist 7 

ance in the liquid shell. The pressure drop must be estimated in order to 

determine whether it is sufficiently large to affect the vapor flux j. 1he 

connection between Lip£ and j arises from the relation between pressure 1n a 

liquid and the curvature of the gas~liquid interface, The latter in turn 

affects the vapor pressure of water, v..hich is the driving foTce for the vapor 

flux j. 

Rather th<:m deal with the complexity of laminar flow in a spherical 

1iquicl ;shell with a continuous distribution of mass :f1ux on its inner 

boundary 1 we estimate Llp.Q. by using the Hagen,.Poiseui1le for!ffilla for flow 111 
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a straight duct: 

L -
32 ]:9, ·~~ u (1) 

where JJ C. is the viscosity of the liquid, L and ~ are the channel lengtl1 cmd 

hydraulic diameter, respccti vely, and u is the !Tll2an speed of the fl()\;Jing 

liquid. In applyinq F.,q:. (1) to the liquid shell of the spheriml inclusion 

the flow path is considered to run from the cold side of the inclusion to 

tJ1e hot side armmd half of the circumference through the middle of the liquid 

shell, or 

'IT 
b + a 

(2) 

The hydraulic diameter is defined as 4 tines the cross sec-tional area for 

flOIN di vidL"<i by the wetted perimeter. For the liquid shell, the fl()\;.7 area 

is n (b2 ~}) and the wetted perimeter is 2nb (the inner boun.dary of the shell 

d:x-:s not ron tribute to the wetted perirreter because it offers no frictional 

resistance to L1.e flow}, 'Therefore, the hydraulic diameter is: 

2 (b+a) (lra) = ~~~---- (3) 

The maximum backfl()\;.7 through the liquid shell occurs at the midplane where 

the average velocity is: 

(4) 

wtH"re PQ, is the density of the liquid. 

Substituting Eqs. (2) - ( 4) into 13q. (1) yields: 

(5) 
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where H = b/a. It is to be noted that l\pQ, increases very rapidly as the 

liquid she11 becomes thin (i.e., as II->- 1). /\n idea of the magnitude of 1\pQ, can 

be obtained by using physical property data for NaC1 brine at rv so6c, assuming a 

10 11Tn diameter inclusion containing 35% by volume of gas, and taking 

j ""Z:x:l0- 7 mo1es/on2-sec. (This value of j is computed in Section E but we 

borrow it for the purpose of this calculation) . Using these figures, Eq. (5) 

-4 -9 
gives L'lp ,Q, ~ ZxlO Pa (ZxlO atm). Thus, only an exceedingly small pressure 

drop is needed to drive the water backflow. 

Because of the curvature of the bubble surface, the pressure in the 

1iquid is smaller than the pressure of the gas, which uniform throughout 

the gas bubble. The difference of the liquid pressures at the hot and cold 

sides of 

at these 

where '( 

the bubble related to the radii of curvature of the interfaces 

two locations by: 

? cl 1 
L'lp,Q, "" w'( - - Rc) Rh 

the surface tension of water and Rh and R are the radii of c 

(6) 

curvature on the hot and cold sides of the bubble, respectively. Thus, the 

bubble mUst depart slightly from spherical shape in order to provide the 

pressure driving force 6pfL to return the flux of vapor crossing the bubble 

in the gas phase , 

The vapor pressure over a curved liquid surface is different from that 

over a flat surface. This phenomenon is described by Kelvin's equation(S): 

(7) 
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the vapor pressure above a surface with radius of curvature 

R and R is the gas constant. Ignoring for the moment the effect of temper

ature (and salt concentration) on p , the vapor pressure difference due only 
w 

to bubble distortion is, from Eq. (7): 

(8) 

Eliminating the difference in the reciprocal radii of curvatures between 

Eqs. (6) and (8) yields: 

(pw) rold - (pw) 

Pw bubble 
distortion 

(9) 

where (pw)cold = pw(Rc) and (pw)hot = pw(Rh). Using the value of L'1pQ, 

estimated previot1sly, the fractional change in water vapor pressure due to 

the bubble distortion needed to drive the backflow is~ l0- 12 . 

This number is to be compared with the vapor pressure difference due 

to the temperature gradient across the bubble, which is primarily 

responsible for the water flux. This is: 

a "" - l ( dpw) a 
Pw dl' 

IJT 
co 

(10) 

where dp/dT is the variation of the vapor pressure of water with tempera

ture. The temperature gradient across the bubble, dT I dz, has been 
g 

approximated by the gradient in the solid far from the inclusion, 'VT
00

, 

Note that the vapor pressure difference due to bubble distortion is in the 

opposite sense as that due to the thermal gradient, and in this way the 

flow resistance to the liquid backflow acts to reduce the flux j. However, 
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using vrco = 5 K/cm and a = SxlO em, we find that the fractional difference 

in water vapor pressure due to the temperature gradient is "'10- 4, which is 

8 orders of magnitude larger than that due to bubble distortion. Thus we 

conclude in agreement with Anthony and Cline(6)- but for a different reason -

that the resistance to the backflowing liquid is so small that it has a 

negligible effect upon the vapor flux j. 

The flow field in the liquid shell can be estimated for a prescribed 

vapor flux 1vithout the necessity of confronting the Navier-Stokes equations. 

The radial and angular components of the velocity in the shell a .::_ r .::_ b 

are denoted by u and u . It is convenient to deal with the molar flow r e 

distribution, with components Jr and J
0 

which are related to the velocity 

components by: 

(11) 

where p.Q, is the total molar density of the liquid. 

The flow field is computed by neglecting the presence of dissolved salt 

in the liquid phase (the mole fraction of salt in saturated brine is "' 0.1) 

and calculating the flow of a pure water layer. In this approximation, 

Jr and J 0 vanish at r "" b because the outer bmmdary of the shell is assumed 

to be impervious. 

With reference to the section of the liquid shell shown as the shaded 

area in Fig. 2, the supply of water to this volume element comes from the 

vapor flux j across the circular cross section of the central sphere which 

passes through points 1 and 2. Since the rear surface of the volume element 



(at r ~ b) is impervious to water, all of the water vapor crossing the 

circular cross section must return as backflow through the liquid shell, 

which yields: 
b 

21T sine,[ r (~J8) dr. "'' j1w
2 

sin
2o (12) 

a 

'Ihe radial distribution of the J 8 flow is sketd1ed in Fig. 2. We assurre 

that the shape of this profile is independent of 8 but that its nagni tude 

manges with 8 as water is condensed or evaporated at the inner boundary 

of the shell. 'I'hus, we seek a solution for J
8 

in the separable form: 

'111c function F ( r) 

and 

J = k(G) F(r) 
G 

chosen to satisfy the boundary conditions 

r=a 

Eq. (15) is a reflection of the absence of a shear stress at the 

(13) 

(14) 

(15) 

gas/liquid boundary. Surface shear generated by surface tension gradients 

is not considered. A function which satisfies Eqs. (14) and (15) is: 

F(r) = - (b-r) [z(b-a) - (b-r) J (16) 

Inserting Eq. (16) into Eq. (13) and thence into Eq. (12) determines the 

magnitude factor k (G) by: 

where 

a2k(G) = i_sinG 
2 

2 3 4 
h = '! (H - 1) + 1/4 (H ~ l) 

-8-
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Using Eqs. (16) and (17) in Eq, (13) gives : 

J 8 "' - jF(n) ·sine (19) 

where n r/ a and 

F(n) "' ~0!-n) (H-2+n)/h (20) 

The flow component J can be calcul.ated from Eq. (19) and the overall 
r 

continuity equation: 

! _i(r2 J ) 1 8 ( . 0 J ) = 0 2 Clr r + rsmO -88 Sln·· '0 (21) 
r 

I11tegrating this equation from r = r to r = b and noting that J r (r=b) = 0, 

we have: 

2 
~a J 

r 

b 

1 a l . 0 J , = sinG dG Sill- r 
r 

(-J ) dr'] 0 

Substituting Eq. (19) into Eq. (22) results in: 

where: 

J = - j u (n) cosO 
r 

[ 
2 2 2 2 3 3 4 4] u(nl = (~ ·~ nH) (H ~ n ) + 3 n (H ~ n ) - ~ (H - n ) /h 

-9-
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(2 :)) 

(24) 



C. TEMPERATURE DISTRIBUTION IN A GAS- LIQUID INCLUSION 

The temperature distribution in a stationary sphere imbedded in an 

infinite medium of different thermal conductivity which supports a temperature 

gradient in z·direction vrw is well-known. (7) However, if the sphere 

moves under the influence of a mass transport process driven by the 

temperature gradient, additional factors affecting heat transport appear. 

First, the movement of the sphere introduces a convective heat transfer tenn 

in tile infinite medium, so that the temperature distribution in this region 

1s no longer a solution of Laplace's equation. This moving-medium effect 

quite small because the velocity of sphere motion is generally very small 

and is neglected here. The second effect is related to tile change of phase 

which occurs at the surface of the sphere to generate the mass flux which 

moves the sphere. This pha~e change, which in the present case is vaporiza~ 

tion of water, entails an enthalpy change which must appear in the heat 

transfer analysis. Finally, since the inclusion consists of a liquid contain-

ing a bubble of gas the temperature distributions must be detennined by solu-

tion of the heat conduction equations in the composite medium consisting of 

a central sphere of gas of radius ~' a shell of liquid of outer radius b 

surrounding the central bubble, and an extern.al infinite medium of solid, 

Vaporization of the liquid from the hot portions of the surface of the bubble 

m1d condensation on the cold parts of the surface generates a mass flux j 

in the negative z-direction within the bubble. 

In order to calculate the temperature distribution in this three-

phase system, Laplace's equation must be solved for each phase and the 

solutions joined by appropriate conditions at a and b. 

Distribution in the Solid 

The general solution of Laplace's equation for the axisymmetric 
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spherical coordinate system (9)' 

00 

T (ann + bn/nn+l) P C ) 
s n"'O n n l1 

(25) 

where T s the terrrperature in the solid at n = r/a and p "" cosO, and 

P are the Legendre polynomials. rl11e bounda·ry conditions at large distances 
n 

from inclusion are: 

0T s 

-+ vr for r>>a 
co 

()T 
s 

+ 0 for r>>a 

where x and y represent the two rectangular coordinates pe1-pendicular to 

the direction of the thermal gradient. Gradients in these directions vanish 

far from the inclusion, 

Perfonrring the transformation from rectangu1 ar to spherical coordi ~ 

nates(lO~ the boundary conditions are written: 

( 
()T s ) 2 ( 1 0T s ) 

v ~- l1 ·a- + (1-lJ l n ~ 
n n= n= 

0 

where V "' a'VT . co 

Application of Eqs. (26) and (27) to Eq. (25) gives: 

a = V 
1 

0 

(26) 

(27) 

(28) 



where T the temperature of the solid at the z position of the middle 

of the inclusion but far from the inclusion in the lateral direction. 

Neglecting convection clue to the sensible heat tr<IDsnorted by the mass 

j, the energy equation for the central gas sphere reduces to Laplace's 

equation, for which the solution is: 

T ~ 

9 

00 

(29) 

J . ' l . 1/nn+l ' dmi ibl be th bo '1 ''d So _utlons u1vo v1.ng ~ , , are lna ss e ~.cau..se ey are un unut~ 

at the ce.nter of the sphere. 

Convective heat transfer also neglected in the spherical shell of 

liquid even though the flux .i down the temperature gradient in the snhere 

must be returned by a comparable backflow up the thermal gradient in the 

liquid surrounding the sphere. That the convective heat transport effect 

is small compared to conduction in the liquid can be demonstrated by the 

following argument. 

The energy equation for the liquid in the spherical shell is: 

(30) 

where p£' Cp£' and kQ, are the total density, heat capacity and thennal 

conductivity of the liquid, respectively and v2 is the Laplacian operator 

in axisymmetric coordinates. The fluid velocity components are related 
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to the rolar flux components Jr and J 0 by Eq. (11), so that Eq. (30) is: 

(31) 

Substituting J
8 

and given by Eqs, (19) and (23) into Eq. (31) and 

using dimensionless coordinates yields: 

(32) 

where the Laplacian 1i is now in terms of n while F Cn) and U (n) are the functions 

defined by Eqs. (20) and (24). 

The Peclet number for heat transfer, P~, is the product of the Reynolds 

and Prandt1 numbers, 

(33) 

where ui = j/p,Q, is a characteristic system velocity, in this case equal to 

the liquid velocity at the bubble surface due to condensation or evaporation 

of water. 

Using typical values of the factors in Eq. (33) for brine, the constant 

Peh is found to be < 10-4• Since the tenns on the left-hand side of 

Eq. (32) are of order unity, so must be the right-hand side. The only 

way that this can be achieved with Peh very small is for v2T Q, to be approxi

mately zero. Thus, convective heat transfer can be neglected and the 

energy equation in the liquid shell reduces to Laplace's equation for pure 

conduction. The temperature distribution is thus given by: 

(34) 

TI1e coefficients b . c d and e in the solid. liquid and gas n' n' n n ' 

temperature distributions are determined by the following conditions at 

the interfaces at r "' a and r = b. 

-13-



Interface (r"'a) 

The requirement of temperature continuity at the gas-liquid boundary is: 

T (r"'a) = T 9, (r"'a) g 

T11e energy balance at the gas-liquid interface takes the fonn: 

(35) 

(36) 

where k g the thennal conductivity of the gas and Hg and HR, are the specific 

enti1alpies of the vaporizing species in the two states. The difference 

Hg - I\ is the heat of vaporization Mlv. Eq. (36) is M energy balance normal 

to the surface, and j cosG is the radial component of the mass flux at r = a. 

Solid Interface (r=b) 

The temperature and heat flux are continuous at this boundary: 

and 
3T 

k (-~·) 
s 3r b 

where ~ is the thermal conductivity of the solid. 

0plicit Solutions. for the Te:nperature Di_;;tributions 

(37) 

(38) 

The series solutions of Eqs. (25), (29) and (34) are substituted 

into Eqs. (35) - (38) and the coefficients of each Legendre polynomial 

are equated to zero. This procedure yields: 

and 

b = e = 0 
0 0 

c "" d "" T 
0 0 

b "" c = d = e = 0 for n> 1 n n n n 

·-14-



(39) 

( 40) 

v (41) 

- 'Q(2 + '(9" 

el "" -~"--~'"'---g~-~~-~-·= 
3(1 - y 

v ( 42) 

where: 

1 3 3 
f - 2 + 1/H + (1-1/H ) Yg£ (43) 

f ·- 2 ( l-l/H
3

) + (l +2;li
3

) y Q,s (44) 

g ·- ( 4 5) 

Q -
j fiJI ' v 
k;-vroo 

( 46) 

( 47) 

(48) 

'D1e equations above combined with Eq. (28) provide a complete description 

of the tem1x~rature d1. stributior1s. T T on 1 T , s' g '· ' x: 

T T + ( Vn + bl) JJ (49) s 

T "' T + c
1
np (SO) g 

T "' .£, 
T + ( l\ n + el) ]J (51) 
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Solution Factor 

Not:ing [from Eq, (50)] that a(dT /dz) 9 and V = avT, Eq. (40) is g 00 

equivalent to: 

dT 

a! 9 - ~Q vT 
g ()() (52) 

The coefficient Q is treated as follows, The bubble contains an inert 

gas through which water vapor diffuses :in the negative z-direction, The water 

flux given by (lO): 

(53) 

where Dv is the diffusion coefficient of water vapor in the gas, ptot is 

the total gas pressure, p w the vapor pressure of saturated brine and 

the pressure of the inert gas in the bubble. For the present 

analysis the effect of varying salt concentration on the vapor pressure can 

be neglected and Eq. (53) becomes: 

"" Dvptot dpw ~~g - S dTg 
j p IRT err- crz- ~ crz- (54) 

Substituting Eq. (54) into Eq. (46) and thence into Eq. (52) permits the 

thennal gradient amplification factor to be detennined: 

(55) 

-16-



'1\hen vaporization neglected and the liquid und solid have the same thermal 

conductivities CYn "' 1), Eq. (SS) reduces to the classical result for a 
,x,S 

stationary sphere (7) 

(56) 

'll1e amJJlification factors of Eqs, (SS) and (56) are compared in 

Fig. 3 and sonr of the properties for the calculations nre sho1t.'T1 in Tables 1 - 4, 

'Dw volume fraction of gas in the inclusion is asstrrned to be 35% ·- 'l1:e t:1ree

pllnsc calculation pTedicts a large influence of the latent heat on heat 

tr~msport in the bubble. If y 9-s in Eq, (SS) were very large, the high 

conductivity of the liquid shell would eliminate the perturbation of the 

temperature distribution due to the necessity of transporting the Intent 

heat of vaporization across the bubble. For the brinc/NaCl combination, 

however, y£s"' 1/6, and the liquid phase is a poorer conductor of heat than 

the solid. Thus, the "insulating blanket" of Iiquid ;nound the gas sphere 

impedes-dissipation of the heat of vaporization moved by the flux j across 

the bubble. In the limit as y -r 0, dT /dz -r 0 because there an; no means 
£s g 

of rctuming the lntcnt heat transported across the bubble by conduction in 

the liquid or in the solid. 

-17-



D. CONCENTRATION DISTRIBUTION OF SALT IN THE LIQUID SI-ffiLL 

The flu"< of dissolved salt in the liquid has radial and angular components, 

each of which consists of a convective term and a diffusion term. These 

components are: 

. " -D [ acs 
oC \' c~C')] 

J c 
J ST . 2 + r s 

s p
2 

ar Pz 
(57) 

n, ['cs _ aC ~t - cs)Cr9J + 
JEJCs 

J r 38 s p ()EJ Pz 2 . 
(58) 

where the total flow components Jr and J
8 

are those calculated in Section B, 

the diffusion coefficient of salt in water, and C is the concentration s 

of dissolved salt at position (r,e) in the shell. The Soret coefficient, a, is 

taken as negative when solute moves towards the cold end (which is the case for 

NaCl or KCl solutions). In these expressions (p,Q, - C
5

)/P_e, may be approximated by 

unity without greatly affecting the Soret term. 

The conservation equation.for salt in the liquid shell is: 

div j = 0 _s (59) 

Substituting Eqs. (57) and (58) into this relation results in the diffusion 

equation: 

3C s 
D,e, a 

Using Eqs. (19) and (23) for Jr and J8 , Eq. (51) to calculate (::£) and 

(;-~2)and casting F..q, (60) into dimensionless terms, we have: 
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1vhere ¢ is the salt concentration relative to C~at: 

(62) 

and Pem is the Peclet nurnber for mass transfer: 

(63) 

where 

(64) 

1 s the characteristic velocity upon which the Reynolds number is based and 

JJ9,/p£D£ is the Schmidt number of the liquid. Using properties of NaCl 

brine and a typical value of the vvater vapor flux j , Pem is found to be 

3 h b k f Pn(61) are ~. 10- 5. Therefore < 10- , and the Soret term in t e rae ets o "-"1 v • 

the diffusion equation can be reduced to the Laplacian form 

(65) 

At the outer boundary of the liquid shell, the concentration in the 

liquid is assumed to be equal to the saturation concentration at the local 

temperature. Kinetic restrictions to dissolution of the solid salt or 

precipitation from the liquid phase are not considered in this <:malys 

Because the temperature variation around the inclusion is small, the 

saturation concentration may be expressed as a Taylor series about the 

value at the mean temperature: 

-19-



c (r=b) s (66) 

Evaluating the temperature change around the circumference of the solid-

1 iquid interface from Eq. (25) and the coefficients derived tJ1ereafter, 

we have 

'r ( r=:::b) 
s 

2 
= T + (VH+b /H ) p 

1 

'D1is equation is exact because the coefficients of the higher order 

(67) 

Legendre polynomials in Eq. (25) are all zero. Substituting Eq. (67) into 

(66) yields: 

c (r=:::b) 
s 

(68) 

In this cqua tion, (de~ at/ dT) is the change in salt so 1 uhil i ty in water with 

temperature, 

ln dimensionless te1111s, Eq. (68) is: 

where: 

q 

¢ (n=~H) ~ 1 + q11 

1 
sat c s 

(dC~at ) (l + bl. ) 
dT Vll! 

H a vT 
00 

(70) 

The factor q tends to drive a salt flux in the opposite sense as does 

the water backflow. This term is the one responsible for the movement of 

all-liquid inclusions up the temperature gradient, Using typical values 



for NaCl brine, H = 1.4, vTro = S K/cm, a -· 5 ]Jill and b
1

Vh
3 from Eq. (39), we 

find that q ~ 10-s 

The boundary condition at r = a which prevents flow of salt into the 

gas phase is 

(7l) 

Expressing j sr by Eq. (57) and noting that ( j sr) r=a ~ j cos8, this boundary 

condition becomes: 

. (aT ) l j C (r=a) fl 
- aC (r""a) __! + s "' o 

S or Pn r=a !V 

Using the liquid temperature distribution given by F4. (51), this boundary 

condition ~an be written in dimbnsionless terms as: 

(~) = - [ Pe - a ( d - 2 e )] ¢ ( n = 1) fl = - Pe ' ¢ ( n= 1) fl 
an n=l m 1 · 1 m 

(72) 

(73) 

where Pe 
m the Peclet number of Eq. (63), The Soret term is much smaller 

than the convective term, 

The task at hand is to solve Eq. (65) subject to Eqs. (69) and (73). 

1m accurate approximate method is available because q and Pe~ are very 

small. In the limit that tl1ese two parameters approach zero, the 

solution is ¢ = 1 (i.e.~ the liquid is everywhere saturated with salt at 

temperature T), Thus we are led to a solution which includes first order 

perturbations in q and Pe~, where Pe~ is the bracketed term in Eq. (73). 

¢ = 1 + q~ + Pe'~ m (74) 

where ~ and ~ are functions of n and )1 which are to be determined. Higher 

order terms (L e,, with coefficients q2, (Pe~), and q Pe~) are neglected. 

Substituting Eq. (74) into Eqs. (65), (69) and (73), collectinz cmd equating 
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to zero those tenns with coefficients Pe' and q yields: 
m 

(~~) =~jJ 
n n=l 

and: 

2 
'1/ ~ = 0 

t;,(n=H) = ll 

The solution of Eq. (75) is: 

( 
n n+l) ~ == r n + s /n P ( p) 

-r. n n n n-v 

(75) 

(76) 

\J7) 

(80) 

(81) 

Substituting Eq. (811 into Eqs. (76) and (77) shows thatr = s = 0 n n 
for n ~ 1 and: 

r =- 1 
C82) 1 

211
3 + 1 

sl 
H3 

(83) :::::: 

+ 1 
so that: 

~ "" 
~ [-(H/~) 3_1] V 
2H~ 

(84) 
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TI1e general solution of F4. (78) for t: is of the same fonn as that for n g1 ven 

by F4. (81). Using this series in Eqs. (79) and (80) gives: 

( 85) 

It is to be noted that the perturbation functions [, and ~ do not contain 

higher order Legendre polynomials (i.e,, P2, P3,,,,.). 

E, WATER FLUX IN TIJ:E BUBBLE 

The next step in determining the velocity of the two-phase inclusion 

1s to calculate the water vapor flux across the bubble, j. The angular 

dependence of the vapor/liquid interface termperature, T (n=l), and salt 
g 

concentration at the surface, <PCn=l), contain only constant tenns and tenns 

linear in 1J = cosO (but no higher order Legendre polynomials). 1herefore, 

the flux j, which depends only upon these two quantities, is constant 

over the entire cross section of the bubble perpendicular to the z-axis, 

as was initially assumed. 

Since both j and the coefficient in the parentheses in ti{, (53) are 

constants, Pw is a linear function of z and dpwf dz can be regarded as the 

difference in the vapor pressures of water at the points on the bubble 

surface intersected by a chord parallel to the z-axis divided by the 

length of the chord, Interpreting Pw as the vapor pressure of water 

over a brine solution of temperature Tg and salt concentration Cs allows 

the gradient in Eq, (53) to be written as: 

dp 
w 

dz 
(86) 
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It is convenient to express the effect of salt on the water vapor pressure 

over brine solutions by the boiling point dcvation function Nr (T 1 C ) 1 s 
() 

which is defined in tenns of the vapor pressure of pure water pw by: 

p (T C ) 
'W I s Po ['T-f\'I' ('I'' c )J w s 

(87) 

That J ~::;, the water pressure over a brine solution at t0nperature T and 

salt concentration Cs is equal to the vapor pressure of pure water at 

a temr:>erature /','I' lCNJer tlHn the actual temperature T. Using Eq. (87) 

and neglecting t11e terrq_::erature dq:-endence of !IT (which is small) , tl1e 

coefficients of the temperature and concentration gradients in Eq, (86) 

are: 

and (88) 

Inserting Eq. (88) into (86) and the result into F,q, (53) gives: 

(~~~!) ( ~-) J 
s rc:a 

vJhere: 

s - ( 90) 
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The brine concentration at the gas/liquid interface is, from Eqs. (62) and 

(74) : 

c (:ra) "' c;5at [1 + qi;Cn=l) + Pe '.n(n=l)J s s m 
(91) 

the bubble surface, z "' a cosO "' a]J, so using Eqs. (84 J and (85) 

for 0. and ~' results in: 

(92) 

Using Eq. Cs2) for the temperature gradient and Eq. (92) for the salt 

concentration gradient in Eq. (89) and eliminating the parameters Q, 

Pe~ and q by use of Eqs.(46), (63), (70) and (73) yields an equation which can 

be solved for j. The result is: 

(93) 

where f, g and S are given by Eqs. (44), (45) and (90) respectively, and 

(94) 

c 2 
(95) 

(96) 

-25-



h' (ZH3
+ 1 H:s -1) (97) "" 2 "'~ + y ,Q,s -:r 

H H 

and f' is given by Eq. (43) 

F. INCLUSION VELOCITY 

The :inclusion velocity related to the salt flux crossing the 

midplane of the liquid shell by the mass balance over the control cylinder 

shm,'D :in Fig, 4, This volume moves with the inclusion at velocity v, so 

thut solid salt enters the left-hand face at a rate 7Tb2
p v. Salt moves s 

out of the control cylinder across the annulus formed by the liquid shell 

on the right-hann face at a rate equal to the :integral of the salt flux 

cunponent ( -j ,
0

) _ 0 over the annulus or: 
s- JJ- ' 

J b 2 n r (- j ) 
0 

dr 
a s0 JJ= 

At steady-state, the rate of salt input over the left-hand face of 

the cont1·o1 cyl:inder must equal the output rate from the right-hand face, or: 

(98) 

Using Eq. (58) for j
58

, Eq. (62) for the dimensionless concentration ~' 

expressing J
0 

by Eq. (19) and calculating (oT2/a0) with the help of 

Eq. (51) results in: 

( set= 0 

DQ, c;5at [ ·(~)v=O+ a ¢ Cv=O) n 01 + ;~)] = an s 

+ L F(n) csat ¢ (Jl""O), (99) 
PJ!v s 



The function ¢ is given by Eq. (74) wherein the perturbation functions 

are determined by Eqs. (84) and (85). Substituting these into r~. (99) 

yielT j s0) ''~ Di csat [n (n/n?-1 .Pe Hz (zn + *2 )qj + 
ZH3+1. an s 21~ ·m 

Di csat ~ e~ 
csat 

s + ~· d1 + ~ + j P(nJ -~· an s 0 1') 
PQ, 

Inserting this result into Eq. (98) yields the migration velocity: 

3Pe 
m - 2q al-l/H) (/ . 2e1)} 

+ 0 d - --
1 r} 

!A 

(99) 

(100) 

q Pe 
' m' d1 and e1 are defined by Eqs. (70), (63), (41) and (42) respectively. 

Noting that these parameters are proportional to (aVT,), the ahove 

expression yields a linear dependence upon the temperature gradient but 

none on inclusion size, 

In the limit as H -4 oc (i.e., an all iquid inclusion), Eq. (100) 

reduces to: 

(101) 

which the formula derived by Anthony and Cline (ll) when interface kinetics 

are neglected; The negative sign of v in Eq, (101) means that the all-liquid 
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inclusion noves up the temperature gradient. For all-liquid inclusions, 

it has been shown by Anthony and Cline (ll) that interface kinetics is 

generally rate .. controlling, Therefore, Eqs. (100) and (101), which are based 

on a diffusion-limited transport JOOdel, are expected to overestimate the 

velocities of migration, 

In the lim.'it as H + 1, v should become zero, However, as H + 1 in 

Eq, (100), v approaches the value C:atj/(PsP,e,L and j of Eq. (93) does not 

vanish, The reason that the model fails in this limit is that the water backflow 

is assumed to occur without flow resistance in the liquid shelL Ac::, the 

liquid shell becomes thinner, the backflow still returns the vapor flux j 

but at ever higher speeds, Eventually, however, the assumption of negligible 

frictional resistance to the backflow fails because 6p,Q, of F4. (S) approaches 

infinity as I! + 1, The difference in the radii of curvature of the liquid-gas 

interface on the hot and cold sides become sit::,rnificant in order to provide 

the pressure drop Lp,Q,. The required distortion of the gas-liquid interfaces 

on the hot and cold sides becomes impossible to achieve for a very thin 

liquid film adhering to the inside of the solid cavity and the hot face simply 

dries out, leaving a puddle of liquid at the cold side. However, the exact 

geometry of the inclusion is a bubble in a cubical inclusion. For a volume 

gas fraction equal to 0, 52, the bubble would be tangent to the six inner 

sides of the inclusion. This constitutes a significant departure from the 

geometry adopted in these calculations, Therefore this model is not expected 

-28-



to provide a good description of the phenomena invol vecl when ll < 1. 25 <md so 

the failure of the model as H ~ 1 does not appc<1r to be practic<Jl significance. 

C. mi\lPARISON OF 1l!EORY AND EXPETUMENT 

A con~)ilation of the various parameters nppcaring jn Eq. (100) hos 

been prcparcJ for the systcnLs: sodium d11oridc-water~nir and potassium 

chloridc-vl3ter-air(l3). Using the compiled values, shown in Tables 1 - 4, 

the resulting migration velocities are plotted in Figs. 5 and 6 together with 

data obtained by Anthony and Cline (6), Wilcox( 3) and Olander et a1. (1 2) 

For sodium d1loride brines (Fig. S), the theory predicts a change in 

Jjrcction of inclusion migration at a gas volume fraction between 0.03 and 

0. 06 depending on the tempcr<1ture. 11te experimental velocities obtained in 

Ref. (12) (for gas volune fractions between 0.06 and 0.22) are lower than 

the computed values v.hile Wilcox's data (g<LS volume fractions unreported) 

are \vi thin the r;mgc of calculated values. 

For potassium d1loride brines (Fig. 6), the theory predicts a mange in 

direction of inclusion migration at a g~1s volume fraction equal to rv O.lS. 

111c C>-TJerimcntal and theoretical val ucs of the migration vel ocitLes are in 

good agreement. 

In stunmary, by asstmri.ng a spherically symnctric system, <m ;ma1ytical 

expression for the migration velocity of a two-phase inclusion in a salt matrix 

has been cft:rived. 'l11e theory predicts d1angcs in direction of inclusion 

migration and velocities in the direction of decreasing temperatures in good 

~11:recment with available experimental cbta. 
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1 of ,!l,queou<; Solutions 

Salt Temperature ity Water Sol Dens 

~at mole 2 mole 
OC '-'s X , X , ~ f\ X , 

25 0. 5. 3. 

50 0. 5 5.378 3. 

75 0.551 5. 3.6 

0 0. 5.2 3. 

125 0. 5.138 3. 3 
w 0. 580 5. 3. 

0.594 4.937 3.628 

200 0. 4.830 3. 5 

225 0.627 4.720 3.601 

0. 8 4. 3.587 

I -

40 0.454 S. S 2.66 

'i 
I 

i 
J 



I 
w 
N 
I 

Salt 

NaO 

I 

KCl 

Temperature 

oc I 

25 

so 
75 

100 

125 

150 

175 

200 

225 

250 

40 

Water Diffusivity Point 
In Air Elevation 

, L'IT, ( 

0.262 4. 76 

0. 303 5. 7l 

0.347 6.82 

0.393 8.09 

0.442 9.55 

0.493 11.22 

0.546 13.11 

0.602 15.25 

0.661 17.64 

0. 722 20.27 

0.287 3.78 

---~~--~---- -

Water Vapor Inert Gas I ~lass Transfer 
Pressure Pressure Factor 

bar , bar bar 
K sec-cm-K 

0.024 1.01 0.0015 0.15 

0.092 1.09 0.0048 0.49 

0.288 1.18 0.013 1.28 

0.753 1.26 0.028 2.84 I 
1. 716 l. 35 0.056 5.54 

3.491 I 1.43 0.099 9. 75 

6.483 1.51 0.163 15.8 

11.17 1.60 0.251 24.1 

18.09 1.68 0. 366 34.7 

27.84 1.77 0.511 48.0 

0.060 1.06 I 0.003 0.34 



I 
w 
w 
I 

Table 3 Conductivities 3) 

Solid + 

0 w 3 w w 
C k

5 
X , X , X , ---

50 5. 6. 2. 72 

4.57 6.33 2. 

4.20 6.47 2.88 

125 3.87 6.53 2.96 

1 3.58 6.52 3. 

175 3.33 6. 3.30 

3. 6. 3.58 

'I 225 2.93 6.12 3.93 

I 2so j 2.76 s.ss 4. 36 

2: 2.93 

I 

40 5.99 5. 2.67 

! 



I 
w 
.;:... 
I 

I 

Table 4 

NaCl 

I 
I 
I 

I 

! 

KCl I 

Transport Parameters(l3) 

Heat of 

I 

l<.J 
mole 

25 44.29 

50 I 43.29 

75 I 42.30 

100 41.29 

125 40.25 

150 39.19 

175 38.10 

200 36.96 

225 35.80 

250 34.60 

40 43.69 

Salt Diffusivity 
In Water 

X 

1.66 

2.65 

4.00 

5. 77 

8.05 

10.90 

14.42 

18.69 

23.85 

30.01 

3.13 

Concentration 
So ret on Boiling 

Coefficient Elevation 

1 3llT 
dCsat 

s ax 
' K X 

' err- X 

-2 1. 56 1. 58 

I -2 1.77 2.11 

-2 2.00 2.97 

-2 2.26 3.40 

-2 2.53 4.15 

-2 2.82 4.95 

-2 3.13 5.78 

I -2 3.44 6.67 

-2 3. 78 7.62 I 
-2 4.19 8.68 

-1.8 1.14 25.2 



Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

FIGUHE CAPTIONS 

Cubical Gas-Liquid Inclusion 

Flow in the Liquid Shell 

Temperature Gradient in Bubble 

Diagram for Calculating the Inclusion Velocity 

Migration of Two-Phase Inclusions in NaCl (25° ., 250°C) 

Migration of Two-Phase Inclusions in KCl (40 °C) 
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